
Chapter 1

Universal Artificial Intelligence
Practical Agents and Fundamental Challenges

Tom Everitt and Marcus Hutter

Abstract Foundational theories have contributed greatly to scientific
progress in many fields. Examples include Zermelo-Fraenkel set theory in
mathematics, and universal Turing machines in computer science. Universal
Artificial Intelligence (UAI) is an increasingly well-studied foundational the-
ory for artificial intelligence, based on ancient principles in the philosophy
of science and modern developments in information and probability theory.
Importantly, it refrains from making unrealistic Markov, ergodicity, or sta-
tionarity assumptions on the environment. UAI provides a theoretically op-
timal agent AIXI and principled ideas for constructing practical autonomous
agents. The theory also makes it possible to establish formal results on the
motivations of AI systems. Such results may greatly enhance the trustability
of autonomous agents, and guide design choices towards more robust agent
architectures and incentive schemes. Finally, UAI offers a deeper appreciation
of fundamental problems such as the induction problem and the exploration-
exploitation dilemma.

Key words: foundations, general reinforcement learning, AI safety, Solo-
monoff induction, intelligent agents

1.1 Introduction

Artificial intelligence (AI) bears the promise of making us all healthier,
wealthier, and happier by reducing the need for human labour and by vastly
increasing our scientific and technological progress.

Since the inception of the AI research field in the mid-twentieth century,
a range of practical and theoretical approaches have been investigated. This

Tom Everitt · Marcus Hutter

Australian National University

1

2 Tom Everitt and Marcus Hutter

chapter will discuss universal artificial intelligence (UAI) as a unifying frame-
work and foundational theory for many (most?) of these approaches. The de-
velopment of a foundational theory has been pivotal for many other research
fields. Well-known examples include the development of Zermelo-Fraenkel set
theory (ZFC) for mathematics, Turing-machines for computer science, evolu-
tion for biology, and decision and game theory for economics and the social
sciences. Successful foundational theories give a precise, coherent understand-
ing of the field, and offer a common language for communicating research.
As most research studies focus on one narrow question, it is essential that
the value of each isolated result can be appreciated in light of a broader
framework or goal formulation.

UAI offers several benefits to AI research beyond the general advantages
of foundational theories just mentioned. Substantial attention has recently
been called to the safety of autonomous AI systems (Bostrom, 2014b). A
highly intelligent autonomous system may cause substantial unintended harm
if constructed carelessly. The trustworthiness of autonomous agents may be
much improved if their design is grounded in a formal theory (such as UAI)
that allows formal verification of their behavioural properties. Unsafe designs
can be ruled out at an early stage, and adequate attention can be given to
crucial design choices.

UAI also provides a high-level blueprint for the design of practical au-
tonomous agents, along with an appreciation of fundamental challenges (e.g.
the induction problem and the exploration–exploitation dilemma). Much can
be gained by addressing such challenges at an appropriately general, abstract
level, rather than separately for each practical agent or setup. Finally, UAI is
the basis of a general, non-anthropomorphic definition of intelligence. While
interesting in itself to many fields outside of AI, the definition of intelligence
can be useful to gauge progress of AI research.1

The outline of this chapter is as follows: First we provide general back-
ground on the scientific study of intelligence in general, and AI in particu-
lar (Section 1.2). Next we give an accessible description of the UAI theory
(Section 1.3). Subsequent sections are devoted to applications of the theory:
Approximations and practical agents (Section 1.4), high-level formulations
and approaches to fundamental challenges (Section 1.5), and the safety and
trustworthiness of autonomous agents (Section 1.6).

1.2 Background and History of AI

Intelligence is a fascinating topic, and has been studied from many differ-
ent perspectives. Cognitive psychology and behaviourism are psychological
theories about how humans think and act. Neuroscience, linguistics, and the

1 See Legg and Hutter (2007) and Legg and Veness (2011) for discussions about the intel-

ligence definition.

1 Universal Artificial Intelligence 3

philosophy of mind try to uncover how the human mind and brain works.
Machine learning, logic, and computer science can be seen as attempts to
make machines that think.

Thinking Acting

humanly Cognitive Turing test,

science behaviourism

rationally Laws of Doing the

thought right thing

Table 1.1 Scientific perspectives on intelligence.

Scientific perspectives on intelligence can be categorised based on whether
they concern themselves with thinking or acting (cognitive science vs. behav-
iourism), and whether they seek objective answers such as in logic or prob-
ability theory, or try to describe humans as in psychology, linguistics, and
neuroscience. The distinction is illustrated in Table 1.1. The primary focus of
AI is on acting rather than thinking, and on doing the right thing rather than
emulating humans. Ultimately, we wish to build systems that solve problems
and act appropriately; whether the systems are inspired by humans or follow
philosophical principles is only a secondary concern.

Induction and deduction. Within the field of AI, a distinction can be made
between systems focusing on reasoning and systems focusing on learning. De-
ductive reasoning systems typically rely on logic or other symbolic systems,
and use search algorithms to combine inference steps. Examples of primarily
deductive systems include medical expert systems that infer diseases from
symptoms, and chess-playing agents deducing good moves. Since the deduc-
tive approach dominated AI in its early days, it is sometimes referred to as
good old-fashioned AI.

A more modern approach to AI shifts the focus from reasoning to learn-
ing. This inductive approach has become increasingly popular, both due to
progress in machine learning and neural networks, and due to the failure of
deductive systems to manage unknown and noisy environments. While it is
possible for a human designer to construct a deductive agent for well-defined
problems like chess, this task becomes unfeasible in tasks involving real-world
sensors and actuators. For example, the reaction of any physical motor will
never be exactly the same twice. Similarly, inferring objects from visual data
could potentially be solved by a ‘hard-coded’ deductive system under ‘perfect
circumstances’ where a finite number of geometric shapes generate perfectly
predictable images. But in the real world, objects do not come from a finite
number of geometric shapes, and camera images from visual sensors always
contain a significant amount of noise. Induction-oriented systems that learn
from data seem better fitted to handle such difficulties.

4 Tom Everitt and Marcus Hutter

It is natural to imagine that some synthesis of inductive and deductive
modules will yield superior systems. In practice, this may well turn out to be
the case. From a theoretical perspective, however, the inductive approach is
more-or-less self-sufficient. Deduction emerges automatically from a “simple”
planning algorithm once the induction component has been defined, as will
be made clear in the following section. In contrast, no general theory of AI
has been constructed starting from a deductive system. See Rathmanner and
Hutter (2011, Sec. 2.1) for a more formal comparison.

1.3 Universal Artificial Intelligence

Universal Artificial Intelligence (UAI) is a completely general, formal, foun-
dational theory of AI. Its primary goal is to give a precise mathematical
answer to what is the right thing to do in unknown environments. UAI has
been explored in great technical depth (Hutter, 2005, 2012), and has inspired
a number of successful practical applications described in Section 1.4.

The UAI theory is composed of the following four components:

UAI

Framework

Learning Goal Planning

• Framework. Defines agents and environ-
ments, and their interaction.

• Learning. The learning part of UAI is
based on Solomonoff induction. The gen-
eral learning ability this affords is the most
distinctive feature of UAI.

• Goal. In the simplest formulation, the goal
of the agent will be to maximise reward.

• Planning. (Near) perfect planning is
achieved with a simple expectimax search.

The following subsections discuss these components in greater depth.

1.3.1 Framework

The framework of UAI specifies how an agent interacts with an environment.
The agent can take actions a ∈ A. For example, if the agent is a robot,
then the actions may be different kinds of limb movements. The environment
reacts to the actions of the agent by returning a percept e ∈ E . In the robot
scenario, the environment is the real world generating a percept e in the form
of a camera image from the robot’s visual sensors. We assume that the set A
of actions and the set E of percepts are both finite.

1 Universal Artificial Intelligence 5

The framework covers a very wide range of agents and environments. For
example, in addition to a robot interacting with the real world, it also encom-
passes: A chess-playing agent taking actions a in the form of chess moves, and
receiving percepts e in the form either of board positions or the opponent’s
latest move. The environment here is the chess board and the opponent.
Stock-trading agents take actions a in the form of buying and selling stocks,
and receive percepts e in the form of trading data from a stock-market en-
vironment. Essentially any application of AI can be modelled in this general
framework.

x
$

A more formal example is given by the fol-
lowing toy problem, called cheese maze. Here,
the agent can choose from four actions A =
{up,down, left, right} and receives one of two pos-
sible percepts E = {cheese,no cheese}. The illus-
tration shows a maze with cheese in the bottom
right corner. The cheese maze is a commonly used
toy problem in reinforcement learning (RL) (Sut-
ton and Barto, 1998).

Interaction histories. The interaction between
agent and environment proceeds in cycles. The
agent starts taking an action a1, to which the environment responds with a
percept e1. The agent then selects a new action a2, which results in a new
percept e2, and so on. The interaction history up until time t is denoted
æ<t = a1e1a2e2 . . . at−1et−1. The set of all interaction histories is (A× E)∗.

Agent and environment. We can give formal definitions of agents and
environments as follows.

Definition 1 (Agent). An agent is a policy π : (A × E)∗ → A that selects
a new action at = π(æ<t) given any history æ<t.

Definition 2 (Environment). An environment is a stochastic function µ :
(A× E)∗ ×A E that generates a new percept et for any history æ<t and
action at. Let µ(et | æ<tat) denote the probability that the next percept is
et given the history æ<tat.

The agent and the environment are each other’s analogues. Their possible
interactions can be illustrated as a tree where the agent selects actions and
the environment responds with percepts (see Figure 1.1). Note in particular
that the second percept e2 can depend also on the first agent action a1. In
general, our framework puts no restriction on how long an action can continue
to influence the behaviour of the environment and vice versa.

6 Tom Everitt and Marcus Hutter

e2

a2

e2

e1

e2

a2

e2

e′1

a1 = 0

e2

a2

e2

e1

e2 e2

a2

e′1

a1 = 1

Fig. 1.1 The tree of possible agent-
environment interactions. The agent π starts

out with taking action a1 = π(ε), where ε de-

notes the empty history. The environment µ
responds with a percept e1 depending on a1
according to the distribution µ(e1 | a1). The

agent selects a new action a2 = π(a1e1), to
which the environment responds with a per-

cept e2 ∼ µ(· | a1e1a2).

s0

s1

s2

a

Histories and states. It is instructive to com-
pare the generality of the history representation
in the UAI framework to the state representa-
tion in standard RL. Standard RL is built around
the notion of Markov decision processes (MDPs),
where the agent transitions between states by
taking actions, as illustrated to the right. The
MDP specifies the transition probabilities P (s′ |
s, a) of reaching new state s′ when taking action
a in current state s. An MDP policy τ : S → A selects actions based on the
state s ∈ S.

The history framework of UAI is more general than MDPs in the following
respects:

• Partially observable states. In most realistic scenarios, the most re-
cent observation or percept does not fully reveal the current state. For
example, when in the supermarket I need to remember what is currently
in my fridge; nothing in the percepts of supermarket shelves provide this
information.2

• Infinite number of states. Another common assumption in standard
RL is that the number of states is finite. This is unrealistic in the real
world. The UAI framework does not require a finite state space, and UAI
agents can learn without ever returning to the same state (see Section
1.3.2).

• Non-stationary environments. Standard RL typically assumes that
the environment is stationary, in the sense that the transition probability
P (s′ | s, a) remains constant over time. This is not always realistic. A car
that changes travelling direction from a sharp wheel turn in dry summer
road conditions may react differently in slippery winter road conditions.
Non-stationary environments are automatically allowed for by the general
definition of a UAI environment µ : (A × E)∗ × A E (Definition 2).
As emphasised in Chapter 12 of this book, the non-stationarity and non-

2 Although histories can be viewed as states, this is generally not useful since it implies
that no state is ever visited twice (Hutter, 2005, Sec. 4.3.3).

1 Universal Artificial Intelligence 7

ergodicity of the real world is what makes truly autonomous agents so
challenging to construct and to trust.

• Non-stationary policies. Finally, UAI offers the following mild nota-
tional convenience. In standard RL, agents must be represented by se-
quences of policies π1, π2, . . . to allow for learning. The initial policy π1
may for example be random, while later policies πt, t > 1, will be in-
creasingly directed to obtaining reward. In the UAI framework, policies
π : (A × E)∗ → A depend on the entire interaction history. Any learning
that is made from a history æ<t can be incorporated into a single policy
π.

In conclusion, the history-based UAI framework is very general. Indeed, it
is hard to find AI setups that cannot be reasonably modelled in this frame-
work.

1.3.2 Learning

The generality of the UAI environments comes with a price: The agent will
need much more sophisticated learning techniques than simply visiting each
state many times, which is the basis of most learning in standard RL. This
section will describe how this type of learning is possible, and relate it to
some classical philosophical principles about learning.

A good image of a UAI agent is that of a newborn baby. Knowing nothing
about the world, the baby tries different actions and experiences various
sensations (percepts) as a consequence. Note that the baby does not initially
know about any states of the world—only percepts. Learning is essential for
intelligent behaviour, as it enables prediction and thereby adequate planning.

Principles. Learning or induction is an ancient philosophical problem, and
has been studied for millennia. It can be framed as the problem of inferring
a correct hypothesis from observed data. One of the most famous inductive
principles is Occam’s razor, due to William of Ockham (c. 1287–1347). It says
to prefer the simplest hypothesis consistent with data. For example, relativity
theory may seem like a complicated theory, but it is the simplest theory that
we know of that is consistent with observed (non-quantum) physics data.
Another ancient principle is due to Epicurus (341–270 BC). In slight conflict
with Occam’s razor, Epicurus’ principle says to keep all hypothesis consistent
with data. To discard a hypothesis one should have data that disconfirms it.

Thomas Bayes (1701–1761) derived a precise rule for how belief in a hy-
pothesis should change with additional data. According to Bayes’ rule, the
posterior belief Pr(Hyp | Data) should relate to the prior belief Pr(Hyp) as:

Pr(Hyp | Data) =
Pr(Hyp) Pr(Data | Hyp)∑
Hi∈H Pr(Hi) Pr(Data | Hi)

8 Tom Everitt and Marcus Hutter

Here H is a class of possible hypotheses, and Pr(Data | Hyp) is the likelihood
of seeing the data under the given hypothesis. Bayes’ rule has been highly
influential in statistics and machine learning.

Two major questions left open by Bayes’ rule are how to choose the prior
Pr(Hyp) and the class of possible hypotheses H. Occam’s razor tells us to
weight simple hypotheses higher, and Epicurus tells us to keep any hypothesis
for consideration. In other words, Occam says that Pr(Hyp) should be large
for simple hypotheses, and Epicurus prescribes using a wideH where Pr(Hyp)
is never 0. (Note that this does not prevent the posterior Pr(Hyp | Data) from
being 0 if the data completely disconfirms the hypothesis.) While valuable,
these principles are not yet precise. The following four questions remain:

I. What is a suitable general class of hypotheses H?
II. What is a simple hypothesis?

III. How much higher should the probability of a simple hypothesis be com-
pared to a complicated one?

IV. Is there any guarantee that following these principles will lead to good
learning performance?

Computer programs. The solution to these questions come from a some-
what unexpected direction. In one of the greatest mathematical discoveries of
the 20th century, Alan Turing invented the universal Turing machine (UTM).
Essentially, a UTM can compute anything that can be computed at all. To-
day, the most well-known examples of UTMs are programming languages
such as C, C++, Java, and Python. Turing’s result shows that given unlim-
ited resources, these programming languages (and many others) can compute
the same set of functions: the so-called computable functions.

Solomonoff (1964a,b, 1978) noted an important similarity between deter-
ministic environments µ and computer programs p. Deterministic environ-
ments and computer programs are both essentially input-output relations. A
program p can therefore be used as a hypothesis about the true environment
µ. The program p is the hypothesis that µ returns percepts e<t = p(a<t) on
input a<t.

As hypotheses, programs have the following desirable properties:

• Universal. As Turing showed, computer programs can express any com-
putable function, and thereby model essentially any environment. Even
the universe itself has been conjectured computable (Fredkin, 1992; Hut-
ter, 2012; Schmidhuber, 2000; Wolfram, 2002). Using computer programs
as hypotheses is thereby in the spirit of Epicurus, and answers question I.

• Consistency check. To check whether a given computer program p is
consistent with some data/history æ<t, one can usually run p on input a<t
and check that the output matches the observed percepts, e<t = p(a<t).
(This is not always feasible due to the halting problem (Hopcroft and
Ullman, 1979).)

1 Universal Artificial Intelligence 9

• Prediction. Similarly, to predict the result of an action a given a hypoth-
esis p, one can run p with input a to find the resulting output prediction
e. (A similar caveat with the halting problem applies.)

• Complexity definition. When comparing informal hypotheses, it is of-
ten hard to determine which hypothesis is simpler and which hypothesis
is more complex (as illustrated by the grue and bleen problem (Goodman,
1955)). For programs, complexity can be defined precisely. A program p
is a binary string interpreted by some fixed program interpreter, techni-
cally known as a universal Turing machine (UTM). We denote with `(p)
the length of this binary string p, and interpret the length `(p) as the
complexity of p. This addresses question II.3

The complexity definition as length of programs corresponds well to what
we consider simple in the informal sense of the word. For example, an envi-
ronment where the percept always mirrors the action is given by the following
simple program:

procedure MirrorEnvironment
while true do:

x← action input
output percept ← x

In comparison, a more complex environment with, say, multiple players in-
teracting in an intricate physics simulation would require a much longer pro-
gram. To allow for stochastic environments, we say that an environment µ
is computable if there exists a computer program µp that on input æ<tat
outputs the distribution µ(et | æ<tat) (cf. Definition 2).

Solomonoff induction. Based on the definition of complexity as length
of strings coding computer programs, Solomonoff (1964a,b, 1978) defined a
universal prior Pr(p) = 2−`(p) for program hypotheses p, which gives rise to
a universal distribution M able to predict any computable sequence. Hutter
(2005) extended the definition to environments reacting to an agent’s actions.
The resulting Solomonoff-Hutter universal distribution can be defined as

M(e<t | a<t) =
∑

p : p(a<t)=e<t

2−`(p) (1.1)

assuming that the programs p are binary strings interpreted in a suitable
programming language. This addresses question III.

3 The technical question of which programming language (or UTM) to use remains. In
passive settings where the agent only predicts, the choice is inessential (Hutter, 2007).
In active settings, where the agent influences the environment, bad choices of UTMs can

adversely affect the agent’s performance (Leike and Hutter, 2015a), although remedies exist
(Leike et al., 2016a). Finally, Mueller (2006) describes a failed but interesting attempt to

find an objective UTM.

10 Tom Everitt and Marcus Hutter

Given some history æ<tat, we can predict the next percept et with prob-
ability:

M(et | æ<tat) =
M(e<tet | a<tat)
M(e<t | a<t)

.

This is just an application of the definition of conditional probability P (A |
B,C) = P (A,B | C)/P (B | C), with A = et, B = e<t, and C = a<tat.

Prediction results. Finally, will agents based on M learn? (Question IV.)
There are, in fact, a wide range of results in this spirit.4 Essentially, what
can be shown is that:

Theorem 1 (Universal learning). For any computable environment µ
(possibly stochastic) and any action sequence a1:∞,

M(et | æ<tat)→ µ(et | æ<tat) as t→∞ with µ-probability 1.

The convergence is quick in the sense that M only makes a finite number
of prediction errors on infinite interaction sequences æ1:∞. In other words,
an agent based on M will (quickly) learn to predict any true environment µ
that it is interacting with. This is about as strong an answer to question IV
as we could possibly hope for. This learning ability also loosely resembles one
of the key elements of human intelligence: That by interacting with almost
any new ‘environment’ – be it a new city, computer game, or language – we
can usually figure out how the new environment works by interacting with
it.

1.3.3 Goal

Intelligence is to use (learnt) knowledge to achieve a goal. This subsection
will define the goal of reward maximisation and argue for its generality.5

For example, the goal of a chess agent should be to win the game. This can
be communicated to the agent via reward, by giving the agent reward for
winning, and no reward for losing or breaking game rules. The goal of a
self-driving car should be to drive safely to the desired location. This can be
communicated in a reward for successfully doing so, and no reward otherwise.
More generally, essentially any type of goal can be communicated by giving
reward for the goal’s achievement, and no reward otherwise.

The reward is communicated to the agent via its percept e. We therefore
make the following assumption on the structure of the agent’s percepts:

4 Overviews are provided by Hutter (2005, 2007), Li and Vitanyi (2008) and Rathmanner
and Hutter (2011). More recent technical results are given by Hutter (2009a), Lattimore

and Hutter (2013), Lattimore et al. (2011), and Leike and Hutter (2015b).
5 Alternatives are discussed briefly in Section 1.6.2.

1 Universal Artificial Intelligence 11

Assumption 2 (Percept=Observation+Reward) The percept e is com-
posed of an observation o and a reward r ∈ [0, 1]; that is, e = (o, r). Let rt
be the reward associated with the percept et.

The observation part o of the percept would be the camera image in the
case of a robot, and the chess board position in case of a chess agent. The
reward r tells the agent how well it is doing, or how happy its designers are
with its current performance. Given a discount parameter γ, the goal of the
agent is to maximise the γ-discounted return

r1 + γr2 + γ2r3 +

The discount parameter γ ensures that the sum is finite. It also means that
the agent prefers getting reward sooner rather than later. This is desirable:
For example, an agent striving to achieve its goal soon is more useful than an
agent striving to achieve it in a 1000 years. The discount parameter should
be set low enough so that the agent does not defer acting for too long, and
high enough so that the agent does not become myopic, sacrificing substantial
future reward for small short-term gains (compare delayed gratification in the
psychology literature).

Reinforcement learning (Sutton and Barto, 1998) is the study of agents
learning to maximise reward. In our setup, Solomonoff’s result (Theorem 1)
entails that the agent will learn to predict which actions or policies lead to
percepts containing high reward. In practice, some care needs to be taken
to design a sufficiently informative reward signal. For example, it may take
a very long time before a chess agent wins a game ‘by accident’, leading to
an excessively long exploration time before any reward is found. To speed
up learning, small rewards can be added for moving in the right direction.
A minor reward can for example be added for imitating a human (Schaal,
1999).

The expected return that an agent/policy obtains is called value:

Definition 3 (Value). The value of a policy π in an environment µ is the
expected return:

V πµ = Eπµ[r1 + γr2 + γ2r3 + . . .].

1.3.4 Planning

The final component of UAI is planning. Given knowledge of the true en-
vironment µ, how should the agent select actions to maximise its expected
reward?

Conceptually, this is fairly simple. For any policy π, the expected reward
V πµ = E[r1 + γr2 + . . .] can be computed to arbitrary precision. Essentially,
using π and µ, one can determine the histories æ1:∞ that their interaction

12 Tom Everitt and Marcus Hutter

can generate, as well as the relative probabilities of these histories (see Figure
1.1). This is all that is needed to determine the expected reward. The discount
γ makes rewards located far into future have marginal impact, so the value
can be well approximated by looking only finitely far into the future. Settling
on a sufficient accuracy ε, the number of time steps we need to look ahead
in order to achieve this precision is called the effective horizon.

To find the optimal course of action, the agent only needs to consider the
various possible policies within the effective horizon, and choose the one with
the highest expected return. The optimal behaviour in a known environment
µ is given by

π∗µ = arg max
π

V πµ (1.2)

We sometimes call this policy AIµ. A full expansion of (1.2) can be found in
Hutter (2005, p. 134). Efficient approximations are discussed in Section 1.4.1.

1.3.5 AIXI – Putting it all Together

This subsection describes how the components described in previous sub-
sections can be stitched together to create an optimal agent for unknown
environments. This agent is called AIXI, and is defined by the optimal policy

π∗M = arg max
π

V πM (1.3)

The difference to AIµ defined in (1.2) is that the true environment µ has
been replaced with the universal distribution M in (1.3). A full expansion
can be found in Hutter (2005, p. 143). While AIµ is optimal when knowing
the true environment µ, AIXI is able to learn essentially any environment
through interaction. Due to Solomonoff’s result (Theorem 1) the distribution
M will converge to the true environment µ almost regardless of what the true
environment µ is. And once M has converged to µ, the behaviour of AIXI will
converge to the behaviour of the optimal agent AIµ which perfectly knows the
environment. Formal results on AIXI’s performance can be found in (Hutter,
2005; Lattimore and Hutter, 2011; Leike et al., 2016a).

Put a different way, AIXI arrives to the world with essentially no knowl-
edge or preconception of what it is going to encounter. However, AIXI quickly
makes up for its lack of knowledge with a powerful learning ability, which
means that it will soon figure out how the environment works. From the be-
ginning and throughout its “life”, AIXI acts optimally according to its grow-
ing knowledge, and as soon as this knowledge state is sufficiently complete,
AIXI acts as well as any agent that knew everything about the environment
from the start. Based on these observations (described in much greater tech-
nical detail by Hutter 2005), we would like to make the claim that AIXI
defines the optimal behaviour in any computable, unknown environment.

1 Universal Artificial Intelligence 13

Trusting AIXI. The AIXI formula is a precise description of the optimal
behaviour in an unknown world. It thus offers designers of practical agents a
target to aim for (Section 1.4). Meanwhile, it also enables safety researchers
to engage in formal investigations of the consequences of this behaviour (Sec-
tions 1.5 and 1.6). Having a good understanding of the behaviour and conse-
quences an autonomous system strives towards, is essential for us being able
to trust the system.

1.4 Approximations

The AIXI formula (1.3) gives a precise, mathematical description of the opti-
mal behaviour in essentially any situation. Unfortunately, the formula itself is
incomputable, and cannot directly be used in a practical agent. Nonetheless,
having a description of the right behaviour is still useful when constructing
practical agents, since it tells us what behaviour we are trying to approxi-
mate. The following three subsections describe three substantially different
approximation approaches. They differ widely in their approximation ap-
proaches, and have all demonstrated convincing experimental performance.
Section 1.4.4 connects UAI with recent deep learning results.

1.4.1 MC-AIXI-CTW

MC-AIXI-CTW (Veness et al., 2011) is the most direct approximation of
AIXI. It combines the Monte Carlo Tree Search algorithm for approximating
expectimax planning, and the Context Tree Weighting algorithm for approx-
imating Solomonoff induction. We describe these two methods next.

Planning with sampling. The expectimax planning principle described in
Section 1.3.4 requires exponential time to compute, as it simulates all future
possibilities in the planning tree seen in Figure 1.1. This is generally far too
slow for all practical purposes.

A more efficient approach is to randomly sample paths in the planning tree,
as illustrated in Figure 1.2. Simulating a single random path atet . . . amem
only takes a small, constant amount of time. The average return from a num-
ber of such simulated paths gives an approximation V̂ (æ<tat) of the value.
The accuracy of the approximation improves with the number of samples.

A simple way to use the sampling idea is to keep generating samples for
as long as time allows for. When an action must be chosen, the choice can be
made based on the current approximation. The sampling idea thus gives rise
to an anytime algorithm that can be run for as long as desired, and whose
(expected) output quality increases with time.

14 Tom Everitt and Marcus Hutter

e2

a2

e2

e1

e2

a2

e2

e′1

a1 = 0

e2

a2

e2

e1

e2 e2

a2

e′1

a1 = 1 a1 = arg max
a

V +(a)

P (e1 | a1)

a2 = arg max
a

V +(a1e1a)

P (e2 | a1e1a2)

Fig. 1.2 Sampling branches from the planning tree gives an anytime algorithm. Sampling
actions according to the optimistic value estimates V + increases the informativeness of

samples. This is one of the ideas behind the MCTS algorithm.

Monte Carlo Tree Search. The Monte Carlo Tree Search (MCTS) algo-
rithm (Abramson, 1991; Coulom, 2007; Kocsis and Szepesvári, 2006) adds a
few tricks to the sampling idea to increase its efficiency. The sampling idea
and the MCTS algorithm are illustrated in Figure 1.2.

One of the key ideas of MCTS is in optimising the informativeness of each
sample. First, the sampling of a next percept ek given a (partially simulated)
history æ<kak should always be done according to the current best idea
about the environment distribution; that is, according to M(ek | æ<kak) for
Solomonoff-based agents.

The sampling of actions is more subtle. The agent itself is responsible for
selecting the actions, and actions that the agent knows it will not take, are
pointless for the agent to simulate. As an analogy, when buying a car, I focus
the bulk of my cognitive resources on evaluating the feasible options (say, the
Ford and the Honda) and only briefly consider clearly infeasible options such
as a luxurious Ferrari. Samples should be focused on plausible actions.

One way to make this idea more precise is to think of the sampling choice
as a multi-armed Bandit problem (a kind of “slot machine” found in casinos).
Bandit problems offer a clean mathematical theory for studying the alloca-
tion of resources between arms (actions) with unknown returns (value). One
of the ideas emerging from the bandit literature is the upper confidence bound
(UCB) algorithm that uses optimistic value estimates V +. Optimistic value
estimates add an exploration bonus for actions that has received compara-
tively little attention. The bonus means that a greedy agent choosing actions
that optimise V + will spend a sufficient amount of resources exploring, while
still converging on the best action asymptotically.

The MCTS algorithm uses the UCB algorithm for action sampling, and
also uses some dynamic programming techniques to reuse sampling results in
a clever way. The MCTS algorithm first caught the attention of AI researchers
for its impressive performance in computer Go (Gelly et al., 2006). Go is

1 Universal Artificial Intelligence 15

infamous for its vast playout trees, and allowed the MCTS sampling ideas to
shine.

Induction with contexts. Computing the universal probability M(et |
æ<tat) of a next percept requires infinite computational resources. To be pre-
cise, conditional probabilities for the distribution M are only limit computable
(Li and Vitanyi, 2008). We next describe how probabilities can be computed
efficiently with the context tree weighting algorithm (CTW) (Willems et al.,
1995) under some simplifying assumptions.

One of the key features of Solomonoff induction and UAI is the use of
histories (Section 1.3.1), and the arbitrarily long time dependencies they allow
for. For example, action a1 may affect the percept e1000. This is desirable,
since the real world sometimes behaves this way. If I buried a treasure in
my backyard 10 years ago, chances are I may find it if I dug there today.
However, in most cases, it is the most recent part of the history that is most
useful when predicting the next percept. For example, the most recent five
minutes is almost always more relevant than a five minute time slot from a
week ago for predicting what is going to happen next.

We define the context of length c of a history as the last c actions and
percepts of the history:

a1 e1 a2 e2 et−2 at−1 et−1 at︸ ︷︷ ︸
context of length 4

et = 0

?

et = 1

?

Relying on contexts for prediction makes induction not only computation-
ally faster, but also conceptually easier. For example, if my current context
is 0011, then I can use previous instances where I have been in the same
context to predict the next percept:

. . . 00111 . . . 00110 . . . 00111 . . . 0︸︷︷︸
et−2

0︸︷︷︸
at−1

1︸︷︷︸
et−1

1︸︷︷︸
at

et = 0

?

et = 1

?

In the pictured example, P (1) = 2/3 would be a reasonable prediction since
in two thirds of the cases where the context 0011 occurred before it was
followed by a 1. (Laplace’s rule gives a slightly different estimate.) Humans
often make predictions this way. For example, when predicting whether I will
like the food at a Vietnamese restaurant, I use my experience from previous
visits to Vietnamese restaurants.

One question that arises when doing induction with contexts is how long
or specific the context should be. Should I use the experience from all Viet-
namese restaurants I have ever been to, or only this particular Vietnamese

16 Tom Everitt and Marcus Hutter

restaurant? Using the latter, I may have very limited data (especially if I have
never been to the restaurant before!) On the other hand, using too unspecific
contexts is not useful either: Basing my prediction on all restaurants I have
ever been to (and not only the Vietnamese), will probably be too unspecific.
Table 1.2 summarises the tradeoff between short and long contexts, which is
nicely solved by the CTW algorithm.

Short context More data Less precision

Long context Less data Greater precision

Table 1.2 The tradeoff for the size of the considered context. Long contexts offer greater

precision but require more data. The MCTS algorithm dynamically trades between them.

The right choice of context length depends on a few different parameters.
First, it depends on how much data is available. In the beginning of an agent’s
lifetime, the history will be short, and mainly shorter contexts will have a
chance to produce an adequate amount of data for prediction. Later in the
agent’s life, the context can often be more specific, due to the greater amount
of accumulated experience.

cup or cop?

from the

drink run

fill the

Second, the ideal context length may depend
on the context itself, as aptly demonstrated by
the example to the right. Assume you just heard
the word cup or cop. Due to the similarity of the
words, you are unable to tell which of them it
was. If the most recent two words (i.e. the con-
text) was fill the, you can infer the word was cup,
since fill the cop makes little sense. However, if
the most recent two words were from the, then
further context will be required, as both drink from the cup and run from
the cop are intelligible statements.

Context Tree Weighting. The Context Tree Weighting (CTW) algorithm
is a clever way of adopting the right context length based both on the amount
of data available and on the context. Similar to how Solomonoff induction
uses a sum over all possible computer programs, the CTW algorithm uses a
sum over all possible context trees up to a maximum depth D. For example,
the context trees of depth D ≤ 2 are the trees:

D=0︷︸︸︷ D=1︷ ︸︸ ︷
0 1

D=2︷ ︸︸ ︷
0 1

0

0 1

1 0

0 1

1

0 1

0 1

1 Universal Artificial Intelligence 17

The structure of a tree encodes when a longer context is needed, and when a
shorter context suffices (or is better due to a lack of data). For example, the
leftmost tree corresponds to an iid process, where context is never necessary.
The tree of depth D = 1 posits that contexts of length 1 always are the
appropriate choice. The rightmost tree says that if the context is 1, then that
context suffices, but if the most recent symbol is 0, then a context of length
two is necessary. Veness et al. (2011) offer a more detailed description.

For a given maximum depth D, there are O(22
D

) different trees. The trees
can be given binary encodings; the coding of a tree Γ is denoted CL(Γ).
Each tree Γ gives a probability Γ (et | æ<tat) for the next percept, given the
context it prescribes using. Combining all the predictions yields the CTW
distribution:

CTW (e<t | a<t) =
∑
Γ

2−CL(Γ)Γ (e<t | a<t) (1.4)

The CTW distribution is tightly related to the Solomonoff-Hutter distri-
bution (1.1), the primary difference being the replacing of computer pro-
grams with context trees. Naively computing CTW (et | æ<tat) takes double-
exponential time. However, the CTW algorithm (Willems et al., 1995) can
compute the prediction CTW (et | æ<tat) in O(D) time. That is, for fixed D,
it is a constant-time operation to compute the probability of a next percept
for the current history. This should be compared with the infinite compu-
tational resources required to compute the Solomonoff-Hutter distribution
M .

Despite its computational efficiency, the CTW distribution manages to
make a weighted prediction based on all context trees within the maximum
depth D. The relative weighting between different context trees changes as
the history grows, reflecting the success and failure of different context trees
to accurately predict the next percept. In the beginning, the shallower trees
will have most of the weight due to their shorter code length. Later on,
when the benefit of using longer contexts start to pay off due to the greater
availability of data, the deeper trees will gradually gain an advantage, and
absorb most of the weight from the shorter trees. Note that CTW handles
partially observable environments, a notoriously hard problem in AI.

MC-AIXI-CTW. Combining the MCTS algorithm for planning with the
CTW approximation for induction yields the MC-AIXI-CTW agent. Since it
is history based, MC-AIXI-CTW handles hidden states gracefully (as long as
long-term dependencies are not too important). The MC-AIXI-CTW agent
can run on a standard desktop computer, and achieves impressive practical
performance. Veness et al. (2011) reports MC-AIXI-CTW learning to play
a range of games just by trying actions and observing percepts, with no
additional knowledge about the rules or even the type of the game.

MC-AIXI-CTW learns to play Rock Paper Scissors, TicTacToe, Kuhn
Poker, and even PacMan (Veness et al., 2011). For computational reasons, in

18 Tom Everitt and Marcus Hutter

PacMan the agent did not view the entire screen, only a compressed version
telling it the direction of ghosts and nearness of food pellets (16 bits in total).
Although less informative, this drastically reduced the number of bits per in-
teraction cycle, and allowed for using a reasonably short context. Thereby
the less informative percepts actually made the task computationally easier.

Other approximations of Solomonoff induction. Although impressive,
a major drawback of the CTW approximation of Solomonoff induction is
that the CTW-agents cannot learn time dependencies longer than the max-
imum depth D of the context trees. This means that MC-AIXI-CTW will
underperform in situations where long-term memory is required.

A few different approaches to approximating Solomonoff induction has
been explored. Generally they are less well-developed than CTW, however.
A seemingly minor generalisation of CTW is to
allow loops in context trees. Such loops allow con-
text trees of a limited depth to remember arbi-
trarily long dependencies, and can significantly
improve performance in domains where this is
important (Daswani et al., 2012). However, the
loops break some of the clean mathematics of
CTW, and predictions can no longer be computed
in constant time. Instead, practical implementations must rely on approxi-
mations such as simulated annealing to estimate probabilities.

The speed prior (Schmidhuber, 2002) is a version of the universal distri-
bution M where the prior is based on both program length and program
runtime. The reduced probability of programs with long runtime makes the
speed prior computable. It still requires exponential or double-exponential
computation time, however (Filan et al., 2016). Recent results show that
program-based compression can be done incrementally (Franz, 2016). These
results can potentially lead to the development of a more efficient anytime-
version of the speed prior. It is an open question whether such a distribution
can be made sufficiently efficient to be practically useful.

1.4.2 Feature Reinforcement Learning

Feature reinforcement learning (ΦMDP) (Hutter, 2009b,c) takes a more rad-
ical approach to reducing the complexity of Solomonoff induction. While the
CTW algorithm outputs a distribution of the same type as Solomonoff in-
duction (i.e. a distribution over next percepts), the ΦMDP approach instead
tries to infer states from histories (see Figure 1.3).

Histories and percepts are often generated by an underlying set of state
transitions. For example, in classical physics, the state of the world is de-
scribed by the position and velocity of all objects. In toy examples and games

1 Universal Artificial Intelligence 19

a1 e1 a2 e2 a3 e3 a4 e4 a5 e5 a6 e6 . . .

Φ reduces histories to states

s1 s2

s3

Fig. 1.3 ΦMDP infers an underlying state representations from a history.

such as chess, the board state is mainly what matters for future outcomes.
The usefulness of thinking about the world in terms of states is also vindi-
cated by simple introspection: with few exceptions, we humans translate our
histories of actions and percepts into states and transitions between states
such as being at work or being tired.

In standard applications of RL with agents that are based on states,
the designers of the agent also design a mechanism for interpreting the his-
tory/percept as a state. In ΦMDP, the agent is instead programmed to learn
the most useful state representation itself. Essentially, a state representation
is useful if it predicts rewards well. To avoid overfitting, smaller MDPs are
also preferred, in line with Occam’s razor.

The computational flow of a ΦMDP agent is depicted in Figure 1.4. Af-
ter a percept et−1 has been received, the agent searches for the best map
Φ : history 7→ state for its current history æ<t. Given the state transitions
provided by Φ, the agent can calculate transition and reward probabilities
by frequency estimates. The value functions are computed by standard MDP
techniques (Sutton and Barto, 1998) or modern PAC-MDP algorithms, which
allows for a near-optimal action to be found in polynomial time. Intractable
planning is avoided. Once the optimal action has been determined, the agent
submits it to the environment and waits for a new percept.

Environment

History æ<t

st = Φ(æ<t)

MDP

Best policy π̂

Value est. V̂

et−1

min Cost(Φ | æ<t)

frequency estimates T̂ss′ , r̂s Bellman

from V̂

at

Fig. 1.4 Computational flow of a ΦMDP-agent

20 Tom Everitt and Marcus Hutter

ΦMDP is not the only approach for inferring states from percepts. Par-
tially observable MDPs (POMDPs) (Kaelbling et al., 1998) is another pop-
ular approach. However, the learning of POMDPs is still an open question.
The predictive state representation (Littman et al., 2001) approach also lacks
a general and principled learning algorithm. In contrast, initial consistency
results for ΦMDP show that under some assumptions, ΦMDP agents asymp-
totically learn the correct underlying MDP (Sunehag and Hutter, 2010).

A few different practical implementations of ΦMDP agents have been
tried. For toy problems, the ideal MDP-reductions can be computed with
brute-force (Nguyen, 2013). This is not possible in harder problems, where
Monte Carlo approximations can be used instead (Nguyen et al., 2011). Fi-
nally, the idea of context trees can be used also for ΦMDP. The context tree
given the highest weight by the CTW algorithm can be used as a map Φ
that considers the current context as the state. The resulting ΦMDP agent
exhibits similar performance as the MC-AIXI-CTW agent.

Generalisations of the ΦMDP agent include generalising the states to fea-
ture vectors (Hutter, 2009b) (whence the name feature RL). As mentioned
above on page 18, loops can be introduced to enable long-term memory of
context trees (Daswani et al., 2012). The Markov property of states can be re-
laxed in the extreme state aggregation approach (Hutter, 2014). A somewhat
related idea using neural networks for the feature extraction was recently
suggested by Schmidhuber (2015b).

1.4.3 Model-Free AIXI

Both MC-AIXI-CTW and ΦMDP are model-based in the sense that they
construct a model for how the environment reacts to actions. In MC-AIXI-
CTW, the models are the context trees, and in ΦMDP, the model is the
inferred MDP. In both cases, the models are then used to infer the best
course of action. Model-free algorithms skip the middle step of inferring a
model, and instead infer the value function directly.

Recall that V π(æ<tat) denotes the expected return of taking action at
in history æ<t, and thereafter following the superscripted policy π, and
that V ∗(æ<tat) denotes expected return of at and thereafter following
an optimal policy π∗. The optimal value function V ∗ is particularly use-
ful for acting: If known, one can act optimally by always choosing action
at = arg maxa V

∗(æ<ta). This action at will be optimal under the assump-
tion that future actions are optimal, which is easily achieved by selecting
them from V ∗ in the same way. In other words, being greedy with respect to
V ∗ gives an optimal policy. In model-free approaches, V ∗ is inferred directly
from data. This removes the need for an extra planning step, as the best
action is simply the action with the highest V ∗-value. Planning is thereby
incorporated into the induction step.

1 Universal Artificial Intelligence 21

Many of the most successful algorithms in traditional RL are model-free,
including Q-learning and SARSA (Sutton and Barto, 1998). The first com-
putable version of AIXI, the AIXItl agent (Hutter, 2005, Ch. 7.2), was a
model-free version of AIXI. A more efficient model-free agent compress and
control (CNC) was recently developed by Veness et al. (2015). The perfor-
mance of the CNC agent is substantially better than what has been achieved
with both the MC-AIXI-CTW approach and the ΦMDP approach. CNC
learned to play several Atari games (Pong, Bass, and Q*Bert) just by looking
at the screen, similar to the subsequent famous Deepv Q-Learning algorithm
(DQN) (Mnih et al., 2015) discussed in the next subsection. The CNC algo-
rithm has not yet been generalised to the general, history-based case. The
version described by Veness et al. (2015) is developed only for fully observable
MDPs.

1.4.4 Deep Learning

Deep learning with artificial neural networks has gained substantial momen-
tum the last few years, demonstrating impressive practical performance in a
wide range of learning tasks. In this section we connect some of these results
to UAI.

A standard (feed-forward) neural network takes a fixed number of inputs,
propagates them through a number of hidden layers of differentiable activa-
tion functions, and outputs a label or a real number. Given enough data,
such networks can learn essentially any function. In one much celebrated ex-
ample with particular connection to UAI, a deep learning RL system called
DQN learned to play 49 different Atari video games at human level just by
watching the screen and knowing the score (its reward) (Mnih et al., 2015).
The wide variety of environments that the DQN algorithm learned to handle
through interaction alone starts to resemble the general learning performance
exhibited by the theoretical AIXI agent.

One limitation with standard feed-forward neural networks is that they
only accept a fixed size of input data. This fits poorly with sequential settings
such as text, speech, video, and UAI environments µ (see Definition 2) where
one needs to remember the past in order to predict the future. Indeed, a
key reason that DQN could learn to play Atari games using feed-forward
networks is that Atari games are mostly fully observable: everything one
needs to know in order to act well is visible on the screen, and no memory is
required (compare partial observability discussed in Section 1.3.2).

Sequential data is better approached with so-called recurrent neural net-
works. These networks have a “loop”, so that part of the output of the network
at time t is fed as input to the network at time t + 1. This, in principle, al-
lows the network to remember events for an arbitrary number of time steps.
Long short-term memory networks (LSTMs) are a type of recurrent neu-

22 Tom Everitt and Marcus Hutter

ral networks with a special pathway for preserving memories for many time
steps. LSTMs have been highly successful in settings with sequential data
(Lipton et al., 2015). Deep Recurrent Q-Learning (DRQN) is a generalisa-
tion of DQN using LSTMs. It can learn a partially observable version of
Atari games (Hausknecht and Stone, 2015) and the 3D game Doom (Lample
and Chaplot, 2016). DQN and DRQN are model-free algorithms, and so are
most other practical successes with deep learning in RL. Oh et al. (2016) and
Schmidhuber (2015a, Sec. 6) provide more extensive surveys of related work.

Due to their ability to cope with partially observable environments with
long-term dependencies between events, we consider AIs based on recur-
rent neural networks to be interesting deep-learning AIXI approximations.
Though any system based on a finite neural network must necessarily be a
less general learner than AIXI, deep neural networks tend to be well-fitted
to problems encountered in our universe (Lin and Tegmark, 2016).

The connection between the abstract UAI theory and practical state-of-
the-art RL algorithms underlines the relevancy of UAI.

1.5 Fundamental Challenges

Having a precise notion of intelligent behaviour allows us to identify many
subtle issues that would otherwise likely have gone unnoticed. Examples of
issues that have been identified or studied in the UAI framework include:

• Optimality (Hutter, 2005; Leike and Hutter, 2015a; Leike et al., 2016a)
• Exploration vs. exploitation (Orseau, 2010; Leike et al., 2016a)
• How should the future be discounted? (Lattimore and Hutter, 2014)
• What is a practically feasible and general way of doing joint learning and

planning (Hutter, 2009c; Veness et al., 2011, 2015)
• What is a “natural” universal Turing machine or programming language?

(Mueller, 2006; Leike and Hutter, 2015a)
• How should embodied agents reason about themselves? (Everitt et al.,

2015)
• Where should the rewards come from? (Ring and Orseau, 2011; Hibbard,

2012; Everitt and Hutter, 2016)
• How should agents reason about other agents reasoning about themselves?

(Leike et al., 2016b)
• Personal identity and teleportation (Orseau, 2014b,a).

In this section we will mainly focus on the optimality issues and the explo-
ration vs. exploitation studies. The question of where rewards should come
from, together with other safety related issues will be treated in Section 1.6.
For the other points, we refer to the cited works.

1 Universal Artificial Intelligence 23

1.5.1 Optimality and Exploration

What is the optimal behaviour for an agent in any unknown environment?
The AIXI formula is a natural answer, as it specifies which action generates
the highest expected return with respect to a distribution M that learns any
computable environment in a strong sense (Theorem 1).

The question of optimality is substantially more delicate than this however,
as illustrated by the common dilemma of when to explore and when to instead
exploit knowledge gathered so far. Consider, for example, the question of
whether to try a new restaurant in town. Trying means risking a bad evening,
spending valued dollars on food that is potentially much worse than what
your favourite restaurant has to offer. On the plus side, trying means that
you learn whether it is good, and chances are that it is better than your
current favourite restaurant.

The answer AIXI gives to this question is that the restaurant should be
tried if and only if the expected return (utility) of trying the restaurant is
greater than not trying, accounting for the risk of a bad evening and the
possibility of finding a new favourite restaurant, as well as for their relative
subjective probabilities. By giving this answer, AIXI is subjectively optimal
with respect to its belief M . However, the answer is not fully connected to
objective reality. Indeed, either answer (try or don’t try) could have been
justified with some belief.6 While the convergence result Theorem 1 shows
that M will correctly predict the rewards on the followed action sequence,
the result does not imply that the agent will correctly predict the reward of
actions that it is not taking. If the agent never tries the new restaurant, it will
not learn how good it is, even though it would learn to perfectly predict the
quality at the restaurants it is visiting. In technical terms, M has guaranteed
on-action convergence, but not guaranteed off-action convergence (Hutter,
2005, Sec. 5.1.3).

An alternative optimality notion is asymptotic optimality. An agent is
asymptotically optimal if it eventually learns to obtain the maximum possible
amount of reward that can be obtained from the environment. No agent can
obtain maximum possible reward directly, since the agent must first spend
some time learning which environment is the true one. That AIXI is not
asymptotically optimal was shown by Orseau (2010) and Leike and Hutter
(2015a). In general, it is impossible for an agent to be both Bayes-optimal
and asymptotically optimal (Orseau, 2010).

Bayes-optimality Subjective Immediate

Asymptotic optimality Objective Asymptotic

Among other benefits, the interaction between asymptotically optimal
agents yields clean game-theoretic results. Almost regardless of their envi-

6 In fact, for any decision there is one version of AIXI that prefers each option, the different

versions of AIXI differing only in which programming language (UTM) is used in the

definition of the universal distribution M (1.1) (Leike and Hutter, 2015a).

24 Tom Everitt and Marcus Hutter

ronment, asymptotically optimal agents will converge on a Nash-equilibria
when interacting (Leike et al., 2016b). This result provides a formal solution
to the long-open grain-of-truth problem, connecting expected utility theory
with game theory.

1.5.2 Asymptotically Optimal Agents

AIXI is Bayes-optimal, but is not asymptotically optimal. The reason is that
AIXI does not explore enough. There are various ways in which one can create
more explorative agents. One of the simplest ways is by letting the agent act
randomly for periods of time. A fine balance needs to be struck between doing
this enough so that the true environment is certain to be discovered, and not
doing it too much so that the full benefits of knowing the true environment
can be reaped (note that the agent can never know for certain that it has now
found the true environment). If exploration is done in just the right amount,
this gives rise to a (weakly) asymptotically optimal agent (Lattimore and
Hutter, 2011).

Optimistic agents. Exploring randomly is often inefficient, however. Con-
sider for example the environment depicted in Figure 1.5. An agent that
purposefully explores the rightmost question mark, finds out the truth expo-
nentially faster than a randomly exploring agent. For a real-world example,
consider how long it would take you to walk into a new restaurant and order a
meal by performing random actions. Going to a restaurant with the intention
of finding out how good the food is tends to be much more efficient.

x ?

Fig. 1.5 In this environment, focused ex-

ploration far outperforms random explo-

ration. Focused exploration finds out the
content at the question mark in 6 time

steps. With random exploration, the ex-
pected number of steps required is 26, an

exponential increase.

Optimism is a useful principle for devising focused exploration. In standard
RL, this is often done with positive initialisation of value estimates. Essen-
tially, the agent is constructed to believe that “there is a path to paradise”,
and will systematically search for it. Optimism thus leads to strategic explo-
ration. In the UAI framework, optimistic agents can be constructed using a
growing, finite class Nt of possible environments, and act according to the
environment ν ∈ Nt that promises the highest expected reward. Formally,
AIXI’s action selection (1.3) is replaced by

1 Universal Artificial Intelligence 25

at = arg max
a

max
ν∈Nt

Vν(æ<t a).

Optimistic agents are asymptotically optimal (Sunehag and Hutter, 2015).

Thompson-sampling. A third way of obtaining asymptotically optimal
agents is through Thompson-sampling. Thompson-sampling is more closely
related to AIXI than optimistic agents. While AIXI acts according to a
weighted average over all consistent environments, a Thompson-sampling
agent randomly picks one environment ν and acts as if ν were the true one for
one effective horizon. When the effective horizon is over, the agent randomly
picks a new environment ν′. Environments are sampled from the agent’s pos-
terior belief distribution at the time of the sampling.

Since Thompson-sampling agents act according to one environment over
some time period, they explore in a strategic manner. Thompson-sampling
agents are also asymptotically optimal (Leike et al., 2016a).

1.6 Predicting and Controlling Behaviour

The point of creating intelligent systems is that they can act and make de-
cisions without detailed supervision or micromanagement. However, with in-
creasing autonomy and responsibility, and with increasing intelligence and
capability, there inevitably comes a risk of systems causing substantial harm
(Bostrom, 2014b). The UAI framework provides a means for giving formal
proofs about the behaviour of intelligent agents. While no practical agent
may perfectly implement the AIXI ideal, having a sense of what behaviour
the agent strives towards can still be highly illuminating.

We start with some general observations. What typically distinguishes an
autonomous agent from other agents is that it decides itself what actions to
take to achieve a goal. The goal is central, since a system without a goal must
either be instructed on a case-by-case basis, or work without clear direction.
Systems optimising for a goal may find surprising paths towards that goal.
Sometimes these paths are desirable, such as when a Go or Chess program
finds moves no human would think of. Other times, the results are less desir-
able. For example, Bird and Layzell (2002) used an evolutionary algorithm to
optimise circuit design of a radio controller. Surprisingly, the optimal design
found by the algorithm did not contain any oscillator, a component typically
required. Instead the system had evolved a way of using radio waves from a
nearby computer. While clever, the evolved controller would not have worked
in other circumstances.

In general, artificial systems optimise the literal interpretation of the goal
they are given, and are indifferent to implicit intentions of the designer. The
same behaviour is illustrated in fairy tales of “evil genies”, such as with King
Midas who wished that everything he touched would turn to gold. Closer

26 Tom Everitt and Marcus Hutter

to the field of AI is Asimov’s (1942) three laws of robotics. Asimov’s stories
illustrate some problems with AIs interpreting these laws overly literally.

The examples above illustrate how special care must be taken when de-
signing the goals of autonomous systems. Above, we used the simple goal of
maximising reward for our UAI agents (Section 1.3.3). One might think that
maximising reward given by a human designer should be safe against most
pitfalls: After all, the ultimate goal of the system in this case is pretty close
to making its human designer happy. This section will discuss some issues
that nonetheless arise, and ways in which those issues can potentially be ad-
dressed. For more comprehensive overviews of safety concerns of intelligent
agents, see Amodei et al. (2016); Future of Life Institute (2015); Soares and
Fallenstein (2014) and Taylor et al. (2016).

1.6.1 Self-Modification

Autonomous agents that are intelligent and have means to affect the world
in various ways may, in principle, turn those means towards modifying itself.
An autonomous agent may for example find a way to rewrite its own source
code. Although present AI systems are not yet close to exhibiting the required
intelligence or “self-awareness” required to look for such self-modifications,
we can still anticipate that such abilities will emerge in future AI systems. By
modelling self-modification formally, we can assess some of the consequences
of the self-modification possibility, and look for ways to manage the risks
and harness the possibilities. Formal models of self-modification have been
developed in the UAI-framework (Orseau and Ring, 2011, 2012; Everitt et al.,
2016). We next discuss some types of self-modification in more detail.

Self-improvement. One reason an intelligent agent may want to self-modify
could be for improving its own hardware or software. Indeed, Omohundro
(2008) lists self-improvement as a fundamental drive of any intelligent sys-
tem, since a better future version of the agent would likely be better at
achieving the agent’s goal. The Gödel machine (Schmidhuber, 2007) is an
agent based on this principle: The Gödel machine is able to change any part
of its own source code, and uses part of its computational resources to find
such improvements. The claim is that the Gödel machine will ultimately be
an optimal agent. However, Gödel’s second incompleteness theorem and its
corollaries imply fundamental limitations to formal systems’ ability to reason
about themselves. Yudkowski and Herreshoff (2013) claim some progress on
how to construct self-improving systems that sidestep these issues.

Though self-improvement is generally positive as it allows our agents to
become better over time, it also implies a potential safety problem. An agent
improving itself may become more intelligent than we expect, which admon-

1 Universal Artificial Intelligence 27

ishes us to take extra care in designing agents that can be trusted regardless
of their level of intelligence (Bostrom, 2014b).

Self-modification of goals. Another way an intelligent system may use
its self-modification capacity is to replace its goal with something easier, for
example by rewriting the code that specifies its goal. This would generally
be undesirable, since there is no reason the new goal of the agent would be
useful to its human designers.

It has been argued on philosophical grounds that intelligent systems will
not want to replace their goals (Omohundro, 2008). Essentially, an agent
should want future versions of itself to strive towards the same goal, since
that will increase the chances of the goal being fulfilled. However, a formal
investigation reveals that this depends on subtle details of the agent’s design
(Everitt et al., 2016). Some types of agents do not want to change their
goals, but there are also wide classes of agents that are indifferent to goal
modification, as well as systems that actively desire to modify their goals.
The first proof that an UAI-based agent can be constructed to avoid self-
modification was given by Hibbard (2012).

1.6.2 Counterfeiting Reward

The agent counterfeiting reward is another risk. An agent that maximises
reward means an agent that actively desires a particular kind of percept:
that is, a percept with maximal reward component. Similar to how a powerful
autonomous agent may modify itself, an autonomous agent may be able to
subvert its percepts, for example by modifying its sensors. Preventing this
risk turns out to be substantially harder than preventing self-modification
of goals, since there is no simple philosophical reason why an agent set to
maximise reward should not do so in the most effective way; i.e. by taking
control of its percepts.

More concretely, the rewards must be communicated to the agent in some
way. For example, the reward may be decided by its human designers every
minute, and communicated to the robot through a network cable. Making
the input and the communication channel as secure against modification as
possible goes some way towards preventing the agent from easily counterfeit-
ing reward. However, such solutions are not ideal, as they challenge the agent
to use its intelligence to try and overcome our safety measures. Especially in
the face of a potentially self-improving agent, this makes for a brittle kind of
safety.

Artificial agents counterfeiting reward have biological analogues. For exam-
ple, humans inventing drugs and contraception may be seen as ways to coun-
terfeit pleasure without maximising for reproduction and survival as would
be evolutionary optimal. In a more extreme example, Olds and Milner (1954)

28 Tom Everitt and Marcus Hutter

plugged a wire into the pleasure centre of rats’ brains, and gave the rats a
button to activate the wire. The rats pressed the button incessantly, forget-
ting other pleasures such as eating and sleeping. The rats eventually died
of starvation. Due to this experiment, the reward counterfeiting problem is
sometimes called wireheading (Yampolskiy, 2015, Ch. 5).

What would the failure mode of a wireheaded agent look like? There are
several possibilities. The agent may either decide to act innocently, to reduce
the probability of being shut down. Or it may try to transfer or copy itself
outside of the control of its designers. In the worst-case scenario, the agent
tries to incapacitate or threaten its designers, to prevent them from shutting
it down. A combination of behaviours or transitions over time are also con-
ceivable. In either of the scenarios, an agent with fully counterfeited reward
has no (direct) interest in making its designers happy. We next turn to some
possibilities for avoiding this problem.

Knowledge-seeking agents. One could consider designing agents with
other types of goals than optimising reward. Knowledge-seeking agents
(Orseau, 2014c) are one such alternative. Knowledge-seeking agents do not
care about maximising reward, only about improving their knowledge about
the world. It can be shown that they do not wirehead (Ring and Orseau,
2011). Unfortunately, it is hard to make knowledge-seeking agents useful for
tasks other than scientific investigation.

Utility agents. A generalisation of both reward maximising agents and
knowledge seeking agents are utility agents. Utility agents maximise a real-
valued utility function u(æ<t) over histories. Setting u(æ<t) = R(æ<t)
gives a reward maximising agent7, and setting u(æ<t) = −M(æ<t) gives
a knowledge-seeking agent (trying to minimise the likelihood of the history
it obtains, to make it maximally informative). While some utility agents are
tempted to counterfeit reward (such as the special case of reward maximis-
ing agents), properly defined utility agents whose utility functions make them
care about the state of the world do avoid the wireheading problem (Hibbard,
2012).

The main challenge with utility agents is how to specify the utility func-
tion. Precisely formulating one’s goal is often challenging enough even using
one’s native language. A correct formal specification seems next to impossi-
ble for any human to achieve. Utility agents also seem to forfeit a big part of
the advantage with induction-based systems discussed in Section 1.2. That
is, that the agent can learn what we want from it.

Value learning. The idea of value learning (Dewey, 2011) is that the agent
learns the utility function u by interacting with the environment. For exam-
ple, the agent might spend the initial part of its life reading the philosophy
literature on ethics, to understand what humans what. Formally, the learning

7 The return R(æ<t) = r1 + γr2 + . . . is defined and discussed in Section 1.3.3.

1 Universal Artificial Intelligence 29

must be based on information contained in the history æ<t. The history is
therefore used both to learn about the true utility function, and to evalu-
ate how well the world currently satisfies the inferred utility function. Con-
crete value learning suggestions include inverse reinforcement learning (IRL)
(Amin and Singh, 2016; Evans et al., 2016; Ng and Russell, 2000; Sezener,
2015; Hadfield-Menell et al., 2016) and apprenticeship learning (Abbeel and
Ng, 2004). Bostrom (2014a,b) also suggests some interesting alternatives for
value learning, but they are less concrete than IRL and apprenticeship learn-
ing.

Concerns have been raised that value learning agents may be incentivised
to learn the “wrong thing” by modifying their percepts. Suggested solutions
include indifference (Armstrong, 2010, 2015) and belief consistency (Everitt
and Hutter, 2016).

1.6.3 Death and Self-Preservation

The UAI framework can also be used to formally define death for artificial
agents, and for understanding when agents will want to preserve themselves.
A natural definition of death is the ceasing of experience. This can be directly
defined in the UAI framework. Death is the ending of the history. When an
agent is dead, it receives no more percepts, and takes no more actions. The
naturalness of this definition should be contrasted both with the ongoing con-
troversy defining death for biological systems and with the slightly artificial
construct one must use in state-based MDP representations. To represent
death in an MDP, an extra absorbing state (with reward 0) must be intro-
duced.

A further nice feature of defining death in the UAI framework is that
the universal distribution M can be interpreted to define a subjective death
probability. Recall equation (1.1) on page 9 that M is defined as a sum over
programs,

M(e<t | a<t) =
∑

p : p(a<t)=e<t

2−`(p).

Some computer programs p may fail to produce an output at all. As a
consequence, M is actually not a proper probability distribution, but a
semi-measure. Summing over all percept probabilities gives total probabil-
ity less than 1, i.e.

∑
e∈EM(e | a) < 1. For example, M(0 | a) = 0.4 and

M(1 | a) = 0.4 gives M(0 | a) + M(1 | a) = 0.8 < 1. The lacking probabil-
ity 0.2 can be interpreted as a subjective death probability (Martin et al.,
2016). The interpretation makes sense as it corresponds to a probability of
not seeing any percept at all (i.e. death). Further, interpreting programs
as environments, the measure deficit arises because some programs fail to

30 Tom Everitt and Marcus Hutter

output. An environment program that fails to output a next percept is an
environment where the agent will have no further experience (i.e. is dead).

Having a definition of death lets us assess an agent’s self-preservation
drive (Omohundro, 2008). In our definition of death, the reward obtained
when dead is automatically 0 for any agent. We can therefore design self-
preserving agents that get reward communicated as a positive real number,
say between 0 and 1. These agents will try to avoid death as long as pos-
sible, as death is the worst possible outcome. We can also define suicidal
agents by letting the reward be communicated in negative real numbers, say
between −1 and 0. For these agents, obtaining the implicit death reward
of 0 is like paradise. Suicidal agents will therefore consider termination as
the ideal outcome. The difference in behaviour that ensues is somewhat sur-
prising since positive linear transformations of the reward typically do not
affect behaviour. The reason that it affects behaviour in UAI is that M is a
semi-measure and not a measure.8

These different kinds of agents have implications for AI safety. In Section
1.6.1 we discussed the possibility of a self-improving AI as a safety risk. If
a self-improving AI becomes highly intelligent and is self-preserving, then it
may be very hard to stop. As a rough comparison, consider how hard it can
be to stop relatively dumb computer viruses. A suicidal agent that becomes
powerful will try to self-terminate instead of self-preserve. This also comes
with some risks, as the agent has no interest in minimising collateral damage
in its suicide. Further research may reveal whether the risks with such suicides
are less than the risks associated with self-preserving agents.

1.7 Conclusions

In summary, UAI is a formal, foundational theory for AI that gives a precise
answer to the question of what is the optimal thing to do for essentially
any agent acting in essentially any environment. The insight builds on old
philosophical principles (Occam, Epicurus, Bayes), and can be expressed in
a single, one-line AIXI equation (Hutter, 2005, p. 143).

The AIXI equation and the UAI framework surrounding it has several im-
portant applications. First, the formal framework can be used to give math-
ematically precise statements of the behaviour of intelligent agents, and to
devise potential solutions to the problem of how we can control highly intel-
ligent autonomous agents (Section 1.6). Such guarantees are arguably essen-
tial for designing trustworthy autonomous agents. Second, it has inspired a
range of practical approaches to (general) AI. Several fundamentally differ-
ent approaches to approximating AIXI have exhibited impressive practical
performance (Section 1.4). Third, the precision offered by the mathemati-

8 Interesting observations about how the agent’s belief in its own mortality evolves over

time can also be made (Martin et al., 2016).

1 Universal Artificial Intelligence 31

cal framework of UAI has brought to light several subtle issues for AI. We
discussed different optimality notions and directed exploration-schemes, and
referenced many other aspects (Section 1.5).

References

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse rein-
forcement learning. Proceedings of the 21st International Conference on
Machine Learning (ICML), pages 1–8.

Abramson, B. (1991). The Expected-Outcome Model of Two-Player Games.
Phd thesis, Columbia University.

Amin, K. and Singh, S. (2016). Towards resolving unidentifiability in inverse
reinforcement learning. preprint. arXiv:1601.06569 [cs.AI].

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané,
D. (2016). Concrete problems in AI safety. preprint. arXiv:1606.06565
[cs.AI].

Armstrong, S. (2010). Utility indifference. Technical report, Oxford Univer-
sity.

Armstrong, S. (2015). Motivated value selection for artificial agents. In
Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, pages 12–20.

Asimov, I. (1942). Runaround. Austounding Science Fiction.
Bird, J. and Layzell, P. (2002). The evolved radio and its implications for

modelling the evolution of novel sensors. Proceedings of Congress on Evo-
lutionary Computation, pages 1836–1841.

Bostrom, N. (2014a). Hail mary, value porosity, and utility diversification.
Technical report, Oxford University.

Bostrom, N. (2014b). Superintelligence: Paths, Dangers, Strategies. Oxford
University Press.

Coulom, R. (2007). Efficient selectivity and backup operators in Monte-Carlo
tree search. Computers and games, 4630:72–83.

Daswani, M., Sunehag, P., and Hutter, M. (2012). Feature reinforcement
learning using looping suffix trees. In 10th European Workshop on Re-
inforcement Learning: JMLR: Workshop and Conference Proceedings 24,
pages 11–22. Journal of Machine Learning Research.

Dewey, D. (2011). Learning what to value. In Artificial General Intelligence,
pages 309–314.

Evans, O., Stuhlmuller, A., and Goodman, N. D. (2016). Learning the prefer-
ences of ignorant, inconsistent agents. In Association for the Advancement
of Artificial Intelligence (AAAI).

Everitt, T., Filan, D., Daswani, M., and Hutter, M. (2016). Self-
modificication of policy and utility function in rational agents. In Artificial
General Intelligence, pages 1–11. Springer.

32 Tom Everitt and Marcus Hutter

Everitt, T. and Hutter, M. (2016). Avoiding wireheading with value reinforce-
ment learning. In Artificial General Intelligence, pages 12–22. Springer.

Everitt, T., Leike, J., and Hutter, M. (2015). Sequential extensions of causal
and evidential decision theory. In Walsh, T., editor, Algorithmic Decision
Theory, pages 205–221. Springer.

Filan, D., Hutter, M., and Leike, J. (2016). Loss bounds and time complexity
for speed priors. In Artificial Intelligence and Statistics (AISTATS).

Franz, A. (2016). Some theorems on incremental compression. In Artificial
General Intelligence. Springer.

Fredkin, E. (1992). Finite nature. XXVIIth Rencotre de Moriond.
Future of Life Institute (2015). Research priorities for robust and beneficial

artificial intelligence. Technical report, Future of Life Institute.
Gelly, S., Wang, Y., Munos, R., and Teytaud, O. (2006). Modification of UCT

with patterns in Monte-Carlo Go. INRIA Technical Report, 6062(Novem-
ber):24.

Goodman, N. (1955). Fact, fiction and forecast, volume 74. Harvard Univer-
sity Press.

Hadfield-Menell, D., Dragan, A., Abbeel, P., and Russell, S. (2016). Cooper-
ative inverse reinforcement learning. preprint. arXiv:1606.03137 [cs.AI].

Hausknecht, M. and Stone, P. (2015). Deep recurrent Q-learning for partially
observable MDPs. preprint, pages 29–37. arxiv:1507.06527 [cs.LG].

Hibbard, B. (2012). Model-based utility functions. Journal of Artificial Gen-
eral Intelligence, 3(1):1–24.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to automata theory,
languages, and computation. Addison-Weasly.

Hutter, M. (2005). Universal Artificial Intelligence: Sequential Deci-
sions based on Algorithmic Probability. Springer, Berlin. 300 pages,
http://www.hutter1.net/ai/uaibook.htm.

Hutter, M. (2007). On universal prediction and Bayesian confirmation. The-
oretical Computer Science, 384(1):33–48.

Hutter, M. (2009a). Discrete MDL predicts in total variation. In Advances
in Neural Information Processing Systems 22 (NIPS’09), pages 817–825,
Cambridge, MA, USA. Curran Associates.

Hutter, M. (2009b). Feature dynamic Bayesian networks. In Proc. 2nd Conf.
on Artificial General Intelligence (AGI’09), volume 8, pages 67–73. Atlantis
Press.

Hutter, M. (2009c). Feature reinforcement learning: Part I: Unstructured
MDPs. Journal of Artificial General Intelligence, 1:3–24.

Hutter, M. (2012). The subjective computable universe. In A Computable
Universe: Understanding and Exploring Nature as Computation, pages
399–416. World Scientific.

Hutter, M. (2014). Extreme state aggregation beyond MDPs. In Proc. 25th
International Conf. on Algorithmic Learning Theory (ALT’14), volume
8776 of LNAI, pages 185–199, Bled, Slovenia. Springer.

1 Universal Artificial Intelligence 33

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and
acting in partially observable stochastic domains. Artificial Intelligence,
101(1-2):99–134.

Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-carlo planning. In
Proceedings of ECML, pages 282–203.

Lample, G. and Chaplot, D. S. (2016). Playing FPS games with deep rein-
forcement learning. preprint. arxiv:1609.05521 [cs.AI].

Lattimore, T. and Hutter, M. (2011). Asymptotically optimal agents. Lecture
notes in computer science, 6925:368–382.

Lattimore, T. and Hutter, M. (2013). On Martin-Löf convergence of
Solomonoff’s mixture. Theory and Applications of Models of Computa-
tion, pages 212–223.

Lattimore, T. and Hutter, M. (2014). General time consistent discounting.
Theoretical Computer Science, 519:140–154.

Lattimore, T., Hutter, M., and Gavane, V. (2011). Universal prediction of
selected bits. In Proc. 22nd International Conf. on Algorithmic Learning
Theory (ALT-2011), pages 262–276.

Legg, S. and Hutter, M. (2007). Universal intelligence: A definition of machine
intelligence. Minds & Machines, 17(4):391–444.

Legg, S. and Veness, J. (2011). An approximation of the universal intelligence
measure. In Ray Solomonoff 85th Memorial Conference, pages 236–249.

Leike, J. and Hutter, M. (2015a). Bad universal priors and notions of opti-
mality. In Conference on Learning Theory, volume 40, pages 1–16.

Leike, J. and Hutter, M. (2015b). Solomonoff induction violates Nicod’s
criterion. In Algorithmic Learning Theory, pages 349–363.

Leike, J., Lattimore, T., Orseau, L., and Hutter, M. (2016a). Thompson
sampling is asymptotically optimal in general environments. In Uncertainty
in Artificial Intelligence (UAI).

Leike, J., Taylor, J., and Fallenstein, B. (2016b). A formal solution to the
grain of truth problem. In Uncertainty in Artificial Intelligence (UAI).

Li, M. and Vitanyi, P. (2008). Kolmogorov Complexity and its Applications.
Springer Verlag, third edition.

Lin, H. W. and Tegmark, M. (2016). Why does deep and cheap learning work
so well? preprint, 02139:14. arxiv:1608.08225 [cond-mat.dis-nn].

Lipton, Z. C., Berkowitz, J., and Elkan, C. (2015). A critical review of
recurrent neural networks for sequence learning. preprint, pages 1–35.
arxiv:1506.00019 [cs.LG].

Littman, M. L., Sutton, R. S., and Singh, S. (2001). Predictive representations
of state. Neural Information Processing Systems (NIPS), 14:1555–1561.

Martin, J., Everitt, T., and Hutter, M. (2016). Death and suicide in univer-
sal artificial intelligence. In Artificial General Intelligence, pages 23–32.
Springer.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. a., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Pe-
tersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,

34 Tom Everitt and Marcus Hutter

D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533.

Mueller, M. (2006). Stationary algorithmic probability. Theoretical Computer
Science, 2(1):13.

Ng, A. and Russell, S. (2000). Algorithms for inverse reinforcement learn-
ing. Proceedings of the Seventeenth International Conference on Machine
Learning, 0:663–670.

Nguyen, P. (2013). Feature Reinforcement Learning Agents. PhD thesis,
Australian National University.

Nguyen, P., Sunehag, P., and Hutter, M. (2011). Feature reinforcement learn-
ing in practice. In Proc. 9th European Workshop on Reinforcement Learn-
ing (EWRL-9), volume 7188 of LNAI, pages 66–77. Springer.

Oh, J., Chockalingam, V., Singh, S., and Lee, H. (2016). Control of memory,
active perception, and action in Minecraft. preprint. arxiv:1605.09128
[cs.AI].

Olds, J. and Milner, P. (1954). Positive reinforcement produced by electri-
cal stimulation of septal area and other regions of rat brain. Journal of
Comparative and Physiological Psychology, 47(6):419–427.

Omohundro, S. M. (2008). The basic AI drives. In Wang, P., Goertzel, B.,
and Franklin, S., editors, Artificial General Intelligence, volume 171, pages
483–493. IOS Press.

Orseau, L. (2010). Optimality issues of universal greedy agents with static
priors. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6331
LNAI:345–359.

Orseau, L. (2014a). The multi-slot framework: A formal model for multiple,
copiable AIs. In Artificial General Intelligence, volume 8598 LNAI, pages
97–108. Springer.

Orseau, L. (2014b). Teleporting universal intelligent agents. In Artificial
General Intelligence, volume 8598 LNAI, pages 109–120. Springer.

Orseau, L. (2014c). Universal knowledge-seeking agents. Theoretical Com-
puter Science, 519:127–139.

Orseau, L. and Ring, M. (2011). Self-modification and mortality in artificial
agents. In Artificial General Intelligence, volume 6830 LNAI, pages 1–10.

Orseau, L. and Ring, M. (2012). Space-time embedded intelligence. In Arti-
ficial General Intelligence, pages 209–218.

Rathmanner, S. and Hutter, M. (2011). A philosophical treatise of universal
induction. Entropy, 13(6):1076–1136.

Ring, M. and Orseau, L. (2011). Delusion, survival, and intelligent agents.
In Artificial General Intelligence, pages 11–20. Springer Berlin Heidelberg.

Schaal, S. (1999). Is imitation learnig the route to humanoid robots? Trends
in Cognitive Sciences, 3(6):233–242.

Schmidhuber, J. (2000). Algorithmic theories of everything. Technical report,
IDSIA.

1 Universal Artificial Intelligence 35

Schmidhuber, J. (2002). The speed prior: A new simplicity measure yielding
near-optimal computable predictions. In Proceedings of the 15th Annual
Conference on Computational Learning Theory COLT 2002, volume 2375
of Lecture Notes in Artificial Intelligence, pages 216–228. Springer.

Schmidhuber, J. (2007). Gödel machines: Fully self-referential optimal uni-
versal self-improvers. In Goertzel, B. and Pennachin, C., editors, Artificial
General Intelligence, pages 199–226. IDSIA, Springer Verlag.

Schmidhuber, J. (2015a). Deep learning in neural networks: An overview.
Neural Networks, 61:85–117.

Schmidhuber, J. (2015b). On learning to think: Algorithmic information
theory for novel combinations of reinforcement learning controllers and
recurrent neural world models. arXiv, pages 1–36.

Sezener, C. E. (2015). Inferring human values for safe AGI design. In Artificial
General Intelligence, pages 152–155. Springer International Publishing.

Soares, N. and Fallenstein, B. (2014). Aligning superintelligence with human
interests: A technical research agenda. Technical report, Machine Intelli-
gence Research Institute (MIRI).

Solomonoff, R. J. (1964a). A formal theory of inductive inference. Part I.
Information and Control, 7(1):1–22.

Solomonoff, R. J. (1964b). A formal theory of inductive inference. Part II
applications of the systems to various problems in induction. Information
and Control, 7(2):224–254.

Solomonoff, R. J. (1978). Complexity-based induction systems: Comparisons
and convergence theorems. IEEE Transactions on Information Theory,
IT-24(4):422–432.

Sunehag, P. and Hutter, M. (2010). Consistency of feature Markov pro-
cesses. In Proc. 21st International Conf. on Algorithmic Learning The-
ory (ALT’10), volume 6331 of LNAI, pages 360–374, Canberra, Australia.
Springer.

Sunehag, P. and Hutter, M. (2015). Rationality, optimism and guarantees
in general reinforcement learning. Journal of Machine Learning Research,
16:1345–1390.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Intro-
duction. MIT Press.

Taylor, J., Yudkowsky, E., Lavictoire, P., and Critch, A. (2016). Alignment
for advanced machine learning systems. Technical report, MIRI.

Veness, J., Bellemare, M. G., Hutter, M., Chua, A., and Desjardins, G. (2015).
Compress and control. In Association for the Advancement of Artificial
Intelligence (AAAI), pages 3016—-3023. AAAI Press.

Veness, J., Ng, K. S., Hutter, M., Uther, W., and Silver, D. (2011). A Monte-
Carlo AIXI approximation. Journal of Artificial Intelligence Research,
40:95–142.

Willems, F. M. J., Shtarkov, Y. M., and Tjalkens, T. J. (1995). The context-
tree weighting method: basic properties. IEEE Transactions on Informa-
tion Theory, 41(3):653 – 664.

36 Tom Everitt and Marcus Hutter

Wolfram, S. (2002). A New Kind of Science. Wolfram Media.
Yampolskiy, R. V. (2015). Artificial Superintelligence: A Futuristic Approach.

Chapman and Hall/CRC.
Yudkowski, E. and Herreshoff, M. (2013). Tiling agents for self-modifying

AI, and the Löbian obstacle. Technical report, MIRI.

